Создание сборочного чертежа одноступенчатого цилиндрического редуктора. Редукторы

Редуктор-2D V1.7

Проект Редуктор-2D (рис. 5.22) предназначен для проектного расчета приводов машин, состоящих из двигателя, муфты, передачи гибкой связью и одноступенчатого редуктора, и построения в КОМПАС-График чертежа общего вида редуктора, который входит в рассчитанный привод. Программа позволяет рассчитывать 35 различных схем приводов, которые представляют собой всевозможные комбинации передач гибкой связью (ременной, клиноременной или цепной) с одноступенчатым редуктором (цилиндрическим, коническим или червячным).

Рис. 5.22. Главное окно программы Редуктор-2D V1.7


Проект состоит из двух частей: расчетной – исполняемый файл REDUCTOR.exe и графической, выполненной в виде подключаемой библиотеки к системе КОМПАС, – файл REDUCTOR.rtw.

Примечание

Дистрибутив этого проекта находится на прилагаемом к книге компакт-диске в папке Programs\Редуктор 2D V1.7 (rus). После подключения библиотеки REDUCTOR.rtw к КОМПАС вы можете свободно использовать этот проект в своих целях.

В расчетной части выполняется кинематический и силовой расчет всего привода, проектный расчет выбранной передачи гибкой связью, проектный расчет передачи зацеплением (редуктора), расчет валов и подбор подшипников. Для этого нужно запустить файл REDUCTOR.exe. Сам расчет практически полностью автоматизирован, проектировщик при необходимости может лишь подкорректировать некоторые параметры. Детальное описание, как работать с этой частью проекта, приведено в небольших справках, которые доступны в каждом расчетном разделе. Каждый раздел расчета представлен вкладкой (рис. 5.23): первая вкладка – это кинематический и силовой расчет привода, последняя – расчет валов и подшипников, промежуточные две – расчет механических передач, входящих в привод. Результирующие данные расчетов каждой предыдущей вкладки являются исходными данными для расчетов следующей, из чего следует, что вкладки отображают схему привода.



Рис. 5.23. Вкладка, на которой производится расчет цилиндрической зубчатой передачи


После завершения проектного расчета привода можно переходить к графической части проекта (обязательным условием завершения считается выполнение расчета валов, то есть вам необходимо заполнить все вкладки расчетной части). Для этого сначала следует подключить библиотеку REDUCTOR.rtw к КОМПАС. В окне менеджера библиотек выполните команду контекстного меню Добавить описание -> прикладной библиотеки, в открывшемся окне выберите файл библиотеки (REDUCTOR.rtw). В появившемся диалоге Свойства библиотеки вы можете задать имя, которое будет отображено в окне менеджера библиотек, а также выбрать режим открытия (запуска) библиотеки. После подключения библиотека появится в окне менеджера и будет готова к работе.

Примечание

Для данной прикладной библиотеки размещение самого файла REDUCTOR.rtw не имеет значения.

После запуска библиотеки, если окно расчетной части проекта (REDUCTOR.exe) не было закрыто, в окно графической библиотеки будет автоматически загружен редуктор, который был только что спроектирован в расчетной части (рис. 5.24). В противном случае вам придется или заново произвести расчет всего привода, или загрузить данные о рассчитанном приводе, если они, конечно, были сохранены из расчетной части.



Рис. 5.24. Окно графической части проекта Редуктор-2D V1.7


Все, что остается для построения чертежа редуктора, входящего в привод, – нажать кнопку Чертить лист. Программа самостоятельно создаст лист формата А1 и разместит на нем три проекционных вида редуктора со всеми необходимыми сечениями и размерами.

Пример чертежа редуктора, построенного с помощью этой библиотеки, изображен на рис. 5.25. Кроме цилиндрического косозубого редуктора, в привод входит ременная передача. Привод рассчитывался для следующих исходных данных: вращающий момент выходного вала – 1200 Н · м, угловая скорость – 12 с -1 , режим работы – средний.



Рис. 5.25. Чертеж цилиндрического редуктора, сгенерированный прикладной библиотекой Редуктор-2D V1.7


Чертежи редукторов двух других типов приведены ниже. Конический редуктор (рис. 5.26) составляет привод вместе с клиноременной передачей и был рассчитан для следующих параметров: вращающий момент – 700 Н · м, угловая скорость – 15 с -1 , режим работы – средний.



Рис. 5.26. Редуктор конический одноступенчатый


Червячный редуктор, также созданный при помощи этой библиотеки (рис. 5.27), рассчитывался в приводе совместно с цепной передачей для таких параметров: вращающий момент – 2000 Н · м, угловая скорость – 3 с -1 , режим работы – тяжелый.

Лабораторний практикум. Виконання креслень редуктора до курсового проекту «Деталі машин»

Склав викладач к.т.н. П.С. Носов. по матеріалам Кидрука М.И. КОМПАС-3D V10 на 100%.

Лабораторная работа № 9 Тема: Создание сборочного чертежа одноступенчатого цилиндрического редуктора. Создание зубчатого зацеления колеса и шестерни. Теретическая часть

Для начала несколько слов о том, что мы будем чертить. Редуктор – это машиностроительный механизм, предназначенный для согласования рабочих параметров электродвигателя и рабочего органа машины (насоса, конвейера, лебедки и т. п.). Рабочие параметры – это вращательный момент и частота вращения вала. В редукторе, как правило, идет понижение частоты вращения и, соответственно, повышение величины передаваемого момента (в противном случае это уже будет не редуктор, а мультипликатор). Необходимость согласования параметров возникла из-за того, что асинхронные электродвигатели имеют строго определенную частоту вращения и выдаваемую мощность, а на входном валу рабочего агрегата силовые параметры определяются требованиями пользователей (например, количество воды, подаваемой насосом, задает частоту вращения его вала) или условиями работы агрегата (например, скоростью подъема груза). По этой причине параметры двигателя почти никогда не совпадают с теми, которые необходимы в реальном производстве. Трансформация рабочих параметров осуществляется при помощи механических передач зацепления. В редукторах используются преимущественно зубчатые цилиндрические, зубчатые конические или червячные механические передачи. Возможно комбинирование нескольких передач (одного или разных типов) в одном редукторе, например редуктор цилиндрическо-червячный или коническо-цилиндрический. Если в редукторе идет понижение силовых параметров с применением одной механической передачи, то он называется одноступенчатым (рис. 2.79), если с использованием двух последовательно размещенных передач – двухступенчатым, если трех – трехступенчатым.

Рис. 2.79. Одноступенчатый цилиндрический шевронный редуктор (корпус в разрезе)

Исходные данные

Допустим, нужно спроектировать редуктор исходя из таких данных:

Тип редуктора – цилиндрический одноступенчатый косозубый;

Вращающий момент на рабочем валу машины (на выходном валу редуктора) – 1200 Н·м;

Необходимая частота вращения вала – 15 рад/с;

Режим загруженности агрегата – средний.

Дополнительные данные, которые были учтены во время проектирования (согласно рекомендациям стандартов или другой технической литературы), включают:

Коэффициент полезного действия цилиндрического косозубого зацепления – 0,97;

Передаточное число редуктора u – 3, 55;

Коэффициент ширины зубчатого венца ψ ba – 0,6;

Число зубьев шестерни z ш – 20 шт.;

Угол наклона линии зуба β – 15°;

Материал шестерни – сталь 40, нормализация;

Материал колеса – сталь 50, нормализация.

В результате проектных расчетов были получены такие характеристики проектируемого агрегата:

Вращающий момент на входном (ведущем) валу редуктора – 352 Н·м;

Угловая скорость ведущего вала – 53, 25 рад/с;

Число зубьев колеса z к – 71 шт.;

Стандартный нормальный модуль зубьев m – 5, 5 мм;

Межосевое расстояние передачи a ω – 259 мм;

Делительный диаметр колеса d к – 404 мм;

Делительный диаметр шестерни d ш – 104 мм;

Ширина колеса b к – 155 мм.

Все параметры, вычисленные при проектировании, подтверждены проверочными расчетами.

Результат расчета валов дал следующие значения (рис. 2.80):

Размеры ведущего вала: d 11 = 45 мм,d 12 = 50 мм,d 13 = 55 мм,d 14 = 63 мм иd 15 = 71 мм;

Размеры ведомого вала: d 21 = 71 мм,d 22 = 75 мм,d 23 = 80 мм,d 24 = 85 мм иd 25 = 90 мм.


Рис. 2.80. Схема вала редуктора

В принятых индексах диаметров вала первая цифра означает номер вала (1 – ведущий, 2 – ведомый), а вторая – номер участка вала, что отвечает схеме на рис. 2.80 (1 – участок под шкив или колесо, 2 – переходной участок, 3 – диаметр вала под подшипники, 4 – посадочный участок под колесо или шестерню, 5 – диаметр упорного буртика).

Значения диаметров всех участков обоих валов приведены к стандартному ряду Ra40.

Этих данных достаточно для того, чтобы начать построение. В процессе выполнения чертежа отдельные геометрические и компоновочные характеристики будут уточняться, а затем воплощаться на чертеже.

Чертежи редукторов

В этой категории вы сможете найти чертежи редукторов различных конструкций, типов и предназначений. Вообще редуктор – это механизм, передающий и преобразующий вращающий момент с одной или более механическими передачами. Основные характеристики редуктора – передаточное отношение – отношение угловой скорости ведущего вала к угловой скорости ведомого, передаваемая мощность и др.
Самым главным параметром редуктора является тип механической передачи. По этому признаку редукторы делятся на:

  • цилиндрические
  • конические
  • червячные
  • планетарные
  • циклоидальные и т. д.

Количество ступеней редуктора тоже играет не последнюю роль. В промышленности распространены также мотор-редукторы – редукторы, соединенные с электродвигателем. Редуктор, который ступенчато изменяет угловую скорость, называется коробкой передач, а бесступенчатую – вариатором.

Обычно редуктор понижает угловую скорость и повышает вращающий момент, если делается наоборот, то такое устройство называется мультипликатором.

Не секрет, что из всех чертежей чертежи редукторов пользуются, наверное, самой большой популярностью у студентов, очевидно потому что в общетехнической дисциплине «Детали машин» в курсовом проекте приходится разрабатывать именно редуктор. Выбор данного объекта для конструирования не случаен, разработав редуктор «по уму» вы существенно повысите свои навыки и умения в проектировании.

Однако многим такая задача кажется непосильной, особенно вся эта куча чертежей, которую надо нарисовать. На самом деле проектирование редуктора не является таким уж сложным делом, так как методика разработана, как говорится, «от и до», поэтому остается только взять книгу за авторством Дунаева и Леликова «Конструирование узлов и деталей машин» и делать все, как там написано, практически не задумываясь. Никто конечно не отрицает, что все посчитать и сделать все чертежи будет быстро, особенно если делать все правильно и первый раз, а не переделывать курсачи одногруппников или скачанные в Интернете.

Расчеты поддаются довольно неплохой автоматизации, впрочем как и чертежи редуктора, если сильно постараться. При должном желании можно написать программное обеспечение, в котором за одно нажатие кнопки будет сгенерированы и записка и чертежи. Конечно, в бесплатном доступе в Интернете такой софт найти будет тяжело, а если писать самому, то быстрее сделать 5 курсовых вручную. Хотя даже простое применение Маткада существенно автоматизирует данный процесс, ну а чертежи придется, скорее всего, рисовать– или «перебивать» нарисованные кем-то другим.

На нашем сайте вы можете скачать чертежи редукторов различных типов.


Рис. 56. Рабочий чертёж конического вала-шестерни


Рис. 57. Рабочий чертёж червяка

В справочной части таблицы приводят делительный диаметр d 1 , ход витка p h , коэффициент диаметра червяка q , межосевое расстояние a w , обозначение чертежа и число зубьев сопряжённого колеса.

11.6. Чертёж червячного колеса

Пример чертежа червячного колеса приведен на рис. 58. Перед вычерчиванием необходимо изучить требования к рабочим чертежам зубчатых колёс и червяка (пп. 11.3…11.5). Обычно червячное колесо конструируют составным в целях экономии дорогостоящего материала венца. Оно содержит венец из антифрикционного материала, чугунный колёсный центр и при необходимости детали крепления. Чертёж составного червячного колеса является по сути сборочным чертежом . При его вычерчивании с выполнением всех требований к чертежам деталей деталировку составных частей можно не выполнять.

Таблицу параметров выполняют аналогично таблице для червяка с изменениями, показанными на рис. 58. В частности, введен коэффициент смещения колеса (червяк не смещают),

11.9. Чертёж литого корпуса

Пример рабочего чертежа литого корпуса приведен на рис. 59.Корпус редуктора является сложной деталью для изготовления и изображения на рабочем чертеже. Это одна из самых дорогостоящих деталей редуктора. Корпус является опорой для подшипников качения – деталей высокой точности изготовления и монтажа. Поэтому посадочные поверхности под подшипники и плоскости разъёма изготавливают по высокому классу шероховатости (R a = 1,25, R a = 2,5 мкм).

Для обеспечения высокой точности вначале обрабатывают плоскости разъёма. Корпус соединяют с крышкой стяжными болтами с надлежащей затяжкой. Подшипниковые отверстия корпуса и крышки растачивают в совместной обработке, на что даётся указание в технических требованиях. Размер такого отверстия изображают в квадратных скобках. Так же изображены координаты резьбовых




Рис. 58. Рабочий чертёж червячного колеса


Рис. 59. Рабочий чертёж литого корпуса отверстий под винты, которые сверлят по отверстиям в крышке.

На чертеже указывают допуск плоскостности плоскости разъёма, допуски соосности, параллельности и цилиндричности на отверстия под подшипники. Корпус обрабатывают только в местах его сопряжения с другими деталями. Остальные поверхности корпуса – необработанные, на что приведено указание значками в правом верхнем углу чертежа. В технических требованиях также указывают неуказанные формовочные уклоны и литейные радиусы.

11.10. Чертёж сварного корпуса

Пример рабочего чертежа сварного корпуса приведен на рис. 60. От чертежа литого корпуса он отличается наличием рёбер снаружи корпуса. Крышка с корпусом при этом соединяются стяжными болтами. Крышки подшипников – накладной конструкции, их крепят к корпусу винтами. Под фланцы крышек ставят набор металлических прокладок. На корпусе проектируют платики под крышки.

Корпус сваривают из элементов простой формы без радиусных переходов, присущих литой конструкции. Границы между элементами не показаны. Сварка выполнены всеми видами швов: стыковыми С , нахлёсточными Н , тавровыми Т и угловыми У. На условных обозначениях сварных швов указаны шифр соедине-ния, номер шва и количество однотипных швов. Стандарт на способ сварки приведен в технических требованиях. В целом чертёж необходимо выполнять в соответствии с требованиями к рабочему чертежу литого корпуса.

11.11. Чертёж сварной крышки

Пример рабочего чертежа сварной крышки корпуса приведен на рис. 61. Он выполнен аналогично чертежу сварного корпуса. Следует обратить внимание на горизонтально расположенные платики смотрового отверстия , облегчающие шлифование поверхности разъёма.




Рис. 60. Рабочий чертёж сварного корпуса




Рис. 61. Рабочий чертёж сварной крышки

11.12. Чертёж литого корпуса планетарного редуктора


Рис. 42. Сборочный чертёж планетарного редуктора

8. СПЕЦИФИКАЦИИ

К сборочным чертежам составляют спецификации , содержащие разделы «Документация», «Сборочные единицы», «Детали», «Стандартные изделия», «Материалы» и др. в соответствии с ГОСТ 2.106. Порядок заполнения спецификаций регламентируется тем же стандартом и частично изложен в СТО . Пример оформления спецификации двухступенчатого коническо-цилиндрического редуктора по рис. 38 приведен на рис. 43.

В разделе «Документация» указывают «Сборочный чертёж» и «Пояснительная записка». В строке «Сборочный чертёж» указывают количество (1) и шифр по типу ДМ.М311.06.02.00.00 СБ, где последнюю пару цифр резервируют на номера позиций деталей , а предпоследняя пара – для сборочных единиц . В строке «Пояснительная записка» указывают количество листов пояснительной записки и шифр аналогично титульному листу: ДМ.М311.06.02.00.00 ПЗ.

В раздел «Сборочные единицы» включают в необходимых случаях сварные корпусные детали, составное червячное колесо, составные крышки подшипников и другие изделия. При этом шифр изделия дополняется парой цифр по типу ДМ.М311.06.02.00.00.00, где последняя пара соответствует номерам позиций деталей такого изделия, а предпоследняя цифра – номеру позиции такого изделия (сборочной единицы) на сборочном чертеже редуктора. В этом случае и шифр документа будет содержать три пары нулей. Наименование изделия в данном и последующих разделах записывают в именительном падеже единственного числа, начиная именем существительным , например, «Колесо червячное», «Прокладка уплотнительная» и др.

В разделе «Детали» изделия рекомендуется группировать по конструктивному признаку : корпусные детали, зубчатые колёса, валы, крышки подшипников, прокладки регулировочные, кольца уплотнительные и т.д. Для зубчатых колёс в графе «Наименование» вместе с наименованием приводят значения модуля и числа зубьев. После записи наименования деталей проставляют порядковые номера позиций, которые в дальнейшем переносят на сборочный чертеж . В конце раздела оставляют свободными 3...5 строк с резервированием 3...5 номеров позиций.




Рис. 43. Образец спецификации

В разделе приводят наименования деталей, не входящих в раздел «Стандартные изделия». Следует помнить, что кольцо уплотнительное является деталью, а манжета – стандартным изделием. Крышки подшипниковые могут быть и стандартными изделиями (см. прил. Б) и деталями. Наименование «Пробка М16» записывают разделе «Детали».

Шифр детали записывают по типу ДМ.М311.06.02.01.13, где последняя пара цифр соответствует номерам позиций деталей на сборочном чертеже, а предпоследняя пара – номеру позиции редуктора на сборочном чертеже привода. В графе «Примечание» раздела «Детали» указывают марку материала, из которого изготовлено изделие. Допускается не указывать материал в случае, когда выполнен рабочий чертёж детали. В этом случае в графе «Формат» указывают формат листа, на котором выполнен чертёж.

В раздел «Стандартные изделия» записывают изделия, входящие в состав редуктора и относящиеся к категории стандартов. В соответствии с ГОСТ 2.106 изделия группируют по категории стандарта: вначале государственные , затем отраслевые и стандарты организаций.

В каждой категории стандартов запись производят по группам изделий , например, крепёжные изделия (болт, винт, гайка, рым-болт, шайба, шпилька – по алфавиту), подшипники и др.

В пределах каждой группы изделия записывают в алфавитном порядке наименований. В пределах каждого наименования – в порядке возрастания номера стандарта. В пределах каждого номера стандарта – в порядке возрастания основных размеров изделий , например, М8 × 20, М8 × 32, М12 × 40, М12 × 50, М16 × 48.

В разделе «Материалы» приводят наименование и обозначение марки масла , заливаемого в корпус редуктора (в графе «Кол.» указывают объем в дм 3 - литрах), а при необходимости - пластичной смазки, используемой в подшипниках качения (объём в см 3).

Публикации по теме