Финансовые расчеты на основе простых и сложных процентов при определении доходности ценных бумаг. Применение простых процентов Сложные проценты в экономических расчетах

6.2 Применение пределов в экономических расчетах

Сложные проценты

В практических расчетах в основном применяют дискретные проценты, т.е. проценты, начисляемые за фиксированные одинаковые интервалы времени (год, полугодие, квартал и т. д.). Время - дискретная переменная. В некоторых случаях - в доказательствах и расчетах, связанных с непрерывными процессами, возникает необходимость в применении непрерывных процентов. Рассмотрим формулу сложных процентов:

S = P(1 + i) n . (6.16)

Здесь P - первоначальная сумма, i - ставка процентов (в виде десятичной дроби), S - сумма, образовавшаяся к концу срока ссуды в конце n-го года. Рост по сложным процентам представляет собой процесс, развивающийся по геометрической прогрессии. Присоединение начисленных процентов к сумме, которая служила базой для их определения, часто называют капитализацией процентов. В финансовой практике часто сталкиваются с задачей, обратной определению наращенной суммы: по заданной сумме S, которую следует уплатить через некоторое время n, необходимо определить сумму полученной ссуды P. В этом случае говорят, что сумма S дисконтируется, а проценты в виде разности S - P называются дисконтом. Величину P, найденную дисконтированием S, называют современной, или приведенной, величиной S. Имеем:

P = Þ P = = 0.

Таким образом, при очень больших сроках платежа современная величина последнего будет крайне незначительна.

В практических финансово-кредитных операциях непрерывные процессы наращения денежных сумм, т. е. наращения за бесконечно малые промежутки времени, применяются редко. Существенно большее значение непрерывное наращение имеет в количественном финансово-экономическом анализе сложных производственных и хозяйственных объектов и явлений, например, при выборе и обосновании инвестиционных решений. Необходимость в применении непрерывных наращений (или непрерывных процентов) определяется прежде всего тем, что многие экономические явления по своей природе непрерывны, поэтому аналитическое описание в виде непрерывных процессов более адекватно, чем на основе дискретных. Обобщим формулу сложных процентов для случая, когда проценты начисляются m раз в году:

S =P (1 + i/m) mn .

Наращенная сумма при дискретных процессах находится по этой формуле, здесь m - число периодов начисления в году, i - годовая или номинальная ставка. Чем больше m, тем меньше промежутки времени между моментами начисления процентов. В пределе при m ®¥ имеем:

`S = P (1 + i/m) mn = P ((1 + i/m) m) n .

Поскольку (1 + i/m) m = e i , то `S = P e in .

При непрерывном наращении процентов применяют особый вид процентной ставки - силу роста, которая характеризует относительный прирост наращенной суммы в бесконечно малом промежутке времени. При непрерывной капитализации процентов наращенная сумма равна конечной величине, зависящей от первоначальной суммы, срока наращения и номинальной ставки процентов. Для того, чтобы отличить ставки непрерывных процентов от ставки дискретных процентов, обозначим первую через d, тогда `S = Pe .

Сила роста d представляет собой номинальную ставку процентов при m®¥. Множитель наращения рассчитывается с помощью ЭВМ или по таблицам функции.

Потоки платежей. Финансовая рента

Контракты, сделки, коммерческие и производственно-хозяйственные операции часто предусматривают не отдельные разовые платежи, а множество распределенных во времени выплат и поступлений. Отдельные элементы такого ряда, а иногда и сам ряд платежей в целом, называется потоком платежей. Члены потока платежей могут быть как положительными (поступления), так и отрицательными (выплаты) величинами. Поток платежей, все члены которого положительные величины, а временные интервалы между двумя последовательными платежами постоянны, называют финансовой рентой. Ренты делятся на годовые и р-срочные, где р характеризует число выплат на протяжении года. Это дискретные ренты. В финансово-экономической практике встречаются и с последовательностями платежей, которые производятся так часто, что практически их можно рассматривать как непрерывные. Такие платежи описываются непрерывными рентами.

Пример 3.13. Пусть в конце каждого года в течение четырех лет в банк вносится по 1 млн. рублей, проценты начисляются в конце года, ставка - 5% годовых. В этом случае первый взнос обратится к концу срока ренты в величину 10 6 ´ 1,05 3 так как соответствующая сумма была на счете в течение 3 лет, второй взнос увеличится до 10 6 ´ 1,05 2 , так как был на счете 2 года. Последний взнос процентов не приносит. Таким образом, в конце срока ренты взносы с начисленными на них процентами представляют ряд чисел: 10 6 ´ 1,05 3 ; 10 6 ´ 1,05 2 ; 10 6 ´ 1,05; 10 6. Наращенная к концу срока ренты величина будет равна сумме членов этого ряда. Обобщим сказанное, выведем соответствующую формулу для наращенной суммы годовой ренты. Обозначим: S - наращенная сумма ренты, R - размер члена ренты, i - ставка процентов (десятичная дробь), n - срок ренты (число лет). Члены ренты будут приносить проценты в течение n - 1, n - 2,..., 2, 1 и 0 лет, а наращенная величина членов ренты составит

R (1 + i) n - 1 , R (1 + i) n - 2 ,..., R (1 + i), R.

Перепишем этот ряд в обратном порядке. Он представляет собой геометрическую прогрессию со знаменателем (1+i) и первым членом R. Найдем сумму членов прогрессии. Получим: S = R´((1 + i) n - 1)/((1 + i) - 1) = = R´((1 + i) n - 1)/ i. Обозначим S n; i =((1 + i) n - 1)/ i и будем называть его коэффициентом наращения ренты. Если же проценты начисляются m раз в году, то S = R´((1 + i/m) mn - 1)/((1 + i/m) m - 1), где i - номинальная ставка процентов.

Величина a n; i =(1 - (1 + i) - n)/ i называется коэффициентом приведения ренты. Коэффициент приведения ренты при n ®¥ показывает, во сколько раз современная величина ренты больше ее члена:

A n; i = (1 - (1 + i) - n)/ i =1/i.

Пример 3.14. Под вечной рентой понимается последовательность платежей, число членов которой не ограничено - она выплачивается в течение бесконечного числа лет. Вечная рента не является чистой абстракцией - на практике это некоторые виды облигационных займов, оценка способности пенсионных фондов отвечать по своим обязательствам. Исходя из сущности вечной ренты можно полагать, что ее наращенная сумма равна бесконечно большой величине, что легко доказать по формуле: R´((1 + i) n - 1)/ i ® ¥ при n ® ¥.

Коэффициент приведения для вечной ренты a n; i ® 1/i, откуда A = R/i, т. е. современная величина зависит только от величины члена ренты и принятой ставки процентов.



Метод потенциалов. Однако на распределительном методе основаны некоторые другие способы решения задач, что и вызывает необходимость его изучения. 9. Метод потенциалов Решение транспортной задачи любым способом производится на макете. Макет для применения метода потенциалов имеет следующий вид. Основная часть макета выделена двойными линиями. Она содержит k×l клеток. Каждая...

Признакам следует выделить два основных вида игр, несущих наибольшую образовательную нагрузку, так как все остальные являются производными от них. Этими видами являются инновационные игры и ансамблевые игры. Имитационные или ролевые игры позволяют обучать персонал практически с нуля, в то время как два предыдущих вида больше связаны с развивающим обучением. Назначение деловых игр Деловая...

Из остальных факторов мало что удастся сделать. Когда я поступил в корпорацию "Крайслер", то взял с собой мои записные книжки из компании "Форд", в которых была отражена служебная карьера нескольких сот фордовских менеджеров. После увольнения я набросал подробный перечень того, что не хотел оставлять в кабинете. Эти записные книжки в черных переплетах, несомненно, принадлежали мне, но можно было...

Научн. картине мира, кот. дает естествознание. Необходимость применения естствено научных методов и законов в практической деят-ти гуманитарных специальностей и привело к постановке того курса, кот. мы будем изучать: Физика для гуманитариев. (38) Связь между разделами естествознания. Слово естествознание представляет из себя сочетание 2х слов: естество (природа) и знание. В настоящее время...

Областью применения простых процентов чаще всего являются краткосрочные операции(со сроком до одного года) с однократным начислением процентов (краткосрочные ссуды, вексельные кредиты) и реже -- долгосрочные операции.

При краткосрочных операциях используется так называемая промежуточная процентная ставка, под которой понимается годовая процентная ставка, приведенная к сроку вложения денежных средств. Математически промежуточная процентная ставка равна доле годовой процентной ставки. Формула наращения простых процентов с использованием промежуточной процентной ставки имеет следующий вид:

FV = PV (1 + f * r),

FV = PV (1 + t * r / Т),

t -- срок вложения денежных средств (при этом день вложения и день изъятия денежных средств принимаются за один день); Т -- расчетное количество дней в году.

Придолгосрочныхоперациях начисление простых процентов рассчитывается по формуле:

FV = PV (1 + r * n),

где n -- срок вложения денежных средств (в годах). ,

Применение сложных процентов

Областью применения сложных процентов являются долгосрочные операции (со сроком, превышающим год), в том числе предполагающие внутригодовое начисление процентов.


В первом случае применяется обычная формула начисления сложных процентов:

FV = PV (1 + r)n.

Во втором случае применяется формула начисления сложных процентов с учетом внутригодового начисления. Под внутригодовым начислением процентов понимается выплата процентного дохода более одного раза в год. В зависимости от количества выплат дохода в год (m) внутригодовое начисление может быть:

  • 1) полугодовым (m = 2);
  • 2) поквартальным (m = 4);
  • 3) ежемесячным (m = 12);
  • 4) ежедневным (m = 365 или 366);
  • 5) непрерывным (m -» ?).

Формула наращения при полугодовом, поквартальном, ежемесячном и ежедневном начислении сложных процентов имеет следующий вид:

FV = PV (1 + r / m)nm,

где PV -- исходная сумма;

г -- годовая процентная ставка;

n -- количество лет;

m -- количество внутригодовых начислений;

FV -- наращенная сумма.

Процентный доход при непрерывном начислении процентов рассчитывается по следующей формуле:

где: e = 2, 718281 -- трансцендентное число (число Эйлера);

е?n -- множитель наращения, который используется как при целом, так и дробном значении n;

Специальное обозначение процентной ставки при непрерывном начислении процентов (непрерывная процентная ставка, «сила роста»);

n -- количество лет.

При одинаковой величине исходной суммы, одинаковом сроке вложения денежных средств и значении процентной ставки возвращаемая сумма оказывается больше в случае использования формулы внутригодовых начислений, чем в случае использования обычной формулы начисления сложных процентов:

FV = PV (1 + r / m)nm> FV = PV (1 + r)n.

Если доход, полученный при использовании внутригодовых начислений, выразить в процентах, то полученная процентная ставка окажется выше той, которая использовалась при обычном начислении сложных процентов.

Таким образом, первоначально заявленная годовая процентная ставка для начисления сложных процентов, называемая номинальной, не отражает реальной эффективности сделки. Процентная ставка, отражающая фактически полученный доход, называется эффективной. Классификацию процентных ставок при внутригодовом начислении сложных процентов наглядно иллюстрирует рисунок.


Номинальная процентная ставка задается изначально. Для каждой номинальной процентной ставки и на ее основании можно рассчитать эффективную процентную ставку (rе).

Из формулы наращения сложных процентов можно получить формулу эффективной процентной ставки:

FV = PV (1 + r)n;

(1 + re) = FV / PV.

Приведем формулу наращения сложных процентов с внутригодовыми начислениями, при которых каждый год начисляется r / m процента:

FV = PV (1 + r / m)nm.

Тогда эффективная процентная ставка находится по формуле:

(1 + re) = (1 + r/m)m,

re = (l + r/m)m- 1,

где rе -- эффективная процентная ставка; r -- номинальная процентная ставка; m -- количество внутригодовых выплат.

Величина эффективной процентной ставки зависит от количества внутригодовых начислений (m):

  • 1) при m = 1 номинальная и эффективная процентные ставки равны;
  • 2) чем больше количество внутригодовых начислений (значение m), тем больше эффективная процентная ставка.

Областью одновременного применения простых и сложных процентов являются долгосрочные операции, срок которых составляет дробное количество лет. При этом начисление процентов возможно двумя способами:

  • 1) начисление сложных процентов с дробным числом лет;
  • 2) начисление процентов по смешанной схеме.

В первом случае для расчетов применяется формула сложных процентов, в которой присутствует возведение в дробную степень:

FV = PV (1 + r)n+f,

где f -- дробная часть срока вложения денежных средств.

Во втором случае для расчетов применяется так называемая смешанная схема, которая включает формулу начисления сложных процентов с целым числом лет и формулу начисления простых процентов для краткосрочных операций:

FV = PV (1 + r)n * (1 + f * r),

FV = PV (1 + r)n * (1 + t * r / Т) .

Общеизвестна ситуация, что одна и та же сумма денег неравноценна в разные периоды времени. Учет временного фактора в финансовых операциях осуществляется путем начисления процентов.

Процентными деньгами (процентами) называют сумму доходов от предоставления денег в долг в любой форме (выдача ссуд, открытие депозитных счетов, покупка облигаций, сдача оборудования в аренду и т.п.).

Сумма процентных денег зависит от суммы долга, срока его выплаты и процентной ставки, характеризующей интенсивность
начисления процентов. Сумму долга с начисленными процентами называют наращенной суммой. Отношение наращенной суммы к первоначальной сумме долга называют множителем (коэффициентом) наращения. Интервал времени, за который начисляются проценты, называют периодом начисления.

При использовании простых ставок процентов сумма процентных денег определяется исходя из первоначальной суммы долга, независимо от количества периодов начисления и их длительности по формуле:


Приведенная формула используется для определения величины наращенной стоимости капитала при краткосрочных финансовых вложениях.

Если срок долга задается в днях, в приведенную формулу надо вставить выражение:

где 5 - продолжительность периода начисления в днях;

Количество дней в году можно брать точно - 365 или 366 (точные проценты) или приближенно - 360 дней (обыкновенные проценты). Количество дней в каждом целом месяце в течение срока долга также может браться точно или приближенно (30 дней). В мировой банковской практике использование:




приближенного количества дней в каждом целом месяце и обыкновенных процентов называется «германской практикой»;

точного числа дней в каждом месяце и обыкновенных процентов - «французской практикой»;

точного числа дней и точных процентов - «английской практикой».

В зависимости от использования конкретной практики начисления процентов их сумма будет различаться.

Рассмотрим примеры финансово-экономических расчетов по ценным бумагам.

Пример 7.1.

Сберегательный сертификат номиналом 200 тыс. руб. выдан 20.01.2005г. с погашением 05.10.2005г. под 7,5% годовых.

Определить сумму начисленных процентов и цену погашения сертификата при использовании различных способов начисления процентов.

Определим точное и приближенное количество дней до погашения сертификата.

tT04H = 11 дней января + 28 дней февраля + 31 день марта + 30 дней апреля + 31 день мая + 30 дней июня + 31 день июля + 31 день августа + 30 дней сентября + 5 дней октября = 258 дней.

Іприбл = 11 дней января + 30 х 8 дней (февраль - сентябрь) + 5 дней октября = 256 дней.

По сертификатам доход начисляется по процентной ставке. Применим три способа расчета процентов:

1) проценты точные, срок займа - точное число дней:

Іточн = 0,075 х 200 х 258/365 = 10,6 тыс. руб.; цена погашения сертификата:

51 = 200 + 10,6 = 210,6 тыс. руб.;

2) проценты обыкновенные, срок займа - точное число дней, цена погашения сертификата:

52 = 200 + 10,8 = 210,8 тыс. руб.;

3) проценты обыкновенные, срок займа - приближенное число

Іобьікн = 0,075 х 200 х 256/360 = 10,7 тыс. руб., цена погашения сертификата:

53 = 200 + 10,7 = 210,7 тыс. руб.

Пример 7.2.

Банк принимает депозиты на 3 месяца по ставке 4% годовых, на 6 месяцев по ставке 10% годовых и на год по ставке 12% годовых. Определить сумму, которую получит владелец депозита 50 тыс. руб. во всех трех случаях.

Сумма депозита с процентами составит:

1) при сроке 3 месяца:

S = 50 х (1 + 0,25 х 0,04) = 50,5 тыс. руб.;

2) при сроке 6 месяцев:

S = 50 х (1 + 0,5 х 0,1) = 52,5 тыс. руб.;

3) при сроке 1 год:

S = 50 х (1 + 1 х 0,12) = 56 тыс. руб.

При принятии решения о размещении средств в банке немаловажным фактором является соотношение ставки процента и уровня инфляции. Уровень инфляции показывает, на сколько процентов выросли цены за рассматриваемый период времени, и определяется как:


Индекс инфляции показывает, во сколько раз выросли цены за рассматриваемый период. Уровень инфляции и индекс инфляции за один и тот же период связаны соотношением:


где Ju - индекс инфляции за период;

N - количество периодов в течение рассматриваемого срока.

Уровень инфляции за период.

Пример 7.3.

Определить ожидаемый годовой уровень инфляции при уровне инфляции за месяц в 6 и 12%.

Ju = (1 + 0,06)12 = 2,01.

Следовательно, ожидаемый годовой уровень инфляции будет равен = 2,01 - 1 = 1,01, или 101%.

Ju = (1 + 0,12)12 = 3,9.

Ожидаемый уровень инфляции будет равен:

3,9 - 1 = 2,9, или 290%.

Инфляция влияет на доходность финансовых операций.

Реальное значение наращенной суммы с процентами за предельный срок, приведенное к моменту предоставления денег в долг, составит:

Пример 7.4.

Банк принимает депозиты на полгода по ставке 9% годовых. Определить реальные результаты вкладной операции для вклада 1000 тыс. руб. при месячном уровне инфляции 8%.

Сумма вклада с процентами составит:

S = 1 х (1 + 0,5 х 0,09) = 1045 тыс. руб.

Индекс инфляции за срок хранения депозита равен:

Ju = (1 + 0,08)6 = 1,59.

Наращенная сумма с учетом инфляции будет соответствовать сумме:

1045/1,59 = 657 тыс. руб.

При использовании сложных ставок процентов процентные деньги, начисленные после первого периода начисления, являющегося частью общего срока долга, присоединяются к сумме долга. Во втором периоде начисления проценты будут начисляться исходя из первоначальной суммы долга, увеличенной на сумму процентов, начисленных после первого периода начисления, и так далее на каждом последующем периоде начисления. Если сложные проценты начисляются по постоянной ставке и все периоды начисления имеют одинаковую длительность, то наращенная сумма будет равна:

где P - первоначальная сумма долга;

in - ставка процентов в периоде начисления;

п - количество периодов начисления в течение срока.

Пример 7.5.

Депозит 50 тыс. руб. положен в банк на 3 года с начислением сложных процентов по ставке 8% годовых. Определить сумму начисленных процентов.

Сумма депозита с начисленными процентами будет равна:

S = 50 х (1 + 0,08)3 = 63 тыс. руб.

Сумма начисленных процентов составит:

I = S - Р = 63 - 50 = 13 тыс. руб.

Если бы проценты начислялись по простой ставке 8% годовых, сумма их составила бы:

I = 3 х 0,08 х 50 = 12 тыс. руб.

Таким образом, начисление процентов по сложной ставке дает большую сумму процентных денег.

Сложные проценты могут начисляться несколько раз в году. При этом годовую ставку процентов, исходя из которой определяется величина процентов в каждом периоде начисления, называют
номинальной годовой ставкой процентов. При сроке долга п лет и начислении сложных процентов m раз в году общее количество периодов начисления будет равно:

Наращенная сумма будет равна:


1) срок долга:

Пример 7.6.

Вкладчик вносит депозит 40 тыс. руб. на 2 года под номинальную ставку 40% годовых при ежемесячном начислении и капитализации процентов. Определить наращенную сумму и величину начисленных процентов.

Количество периодов начисления равно:

Следовательно, наращенная сумма составит:



Вексель или другое денежное обязательство до наступления срока платежа по нему могут быть куплены банком по цене, меньше суммы, которая должна быть выплачена по ним в конце срока, или, как принято говорить, учтены банком с дисконтом. Предъявитель обязательства при этом получает деньги ранее указанного в нем срока за вычетом дохода
банка в виде дисконта. Банк при наступлении срока оплаты векселя или иного обязательства получает полностью указанную в нем сумму.

Если срок от момента учета до момента погашения обязательства будет составлять некоторую часть года, дисконт будет равен.


В практических расчетах в основном применяют дискретные проценты, т.е. проценты, начисляемые за фиксированные одинаковые интервалы времени (год, полугодие, квартал и т. д.). Время - дискретная переменная. В некоторых случаях - в доказательствах и расчетах, связанных с непрерывными процессами, возникает необходимость в применении непрерывных процентов. Рассмотрим формулу сложных процентов:

S = P(1 + i) n . (6.16)

Здесь P - первоначальная сумма, i - ставка процентов (в виде десятичной дроби), S - сумма, образовавшаяся к концу срока ссуды в конце n -го года. Рост по сложным процентам представляет собой процесс, развивающийся по геометрической прогрессии. Присоединение начисленных процентов к сумме, которая служила базой для их определения, часто называют капитализацией процентов. В финансовой практике часто сталкиваются с задачей, обратной определению наращенной суммы: по заданной сумме S, которую следует уплатить через некоторое время n , необходимо определить сумму полученной ссуды P. В этом случае говорят, что сумма S дисконтируется , а проценты в виде разности S - P называются дисконтом. Величину P, найденную дисконтированием S, называют современной, или приведенной, величиной S. Имеем:

P = ; P = = 0.

Таким образом, при очень больших сроках платежа современная величина последнего будет крайне незначительна. В практических финансово-кредитных операциях непрерывные процессы наращения денежных сумм, т. е. наращения за бесконечно малые промежутки времени, применяются редко. Существенно большее значение непрерывное наращение имеет в количественном финансово-экономическом анализе сложных производственных и хозяйственных объектов и явлений, например, при выборе и обосновании инвестиционных решений. Необходимость в применении непрерывных наращений (или непрерывных процентов) определяется прежде всего тем, что многие экономические явления по своей природе непрерывны, поэтому аналитическое описание в виде непрерывных процессов более адекватно, чем на основе дискретных. Обобщим формулу сложных процентов для случая, когда проценты начисляются m раз в году:

S =P (1 + i/m) mn .

Наращенная сумма при дискретных процессах находится по этой формуле, здесь m - число периодов начисления в году, i - годовая или номинальная ставка. Чем больше m , тем меньше промежутки времени между моментами начисления процентов. В пределе при m → ∞ имеем:

S = P (1 + i/m) mn = P ((1 + i/m) m) n .

Поскольку (1 + i/m) m = e i , то ` S = P e in .

При непрерывном наращении процентов применяют особый вид процентной ставки - силу роста , которая характеризует относительный прирост наращенной суммы в бесконечно малом промежутке времени. При непрерывной капитализации процентов наращенная сумма равна конечной величине, зависящей от первоначальной суммы, срока наращения и номинальной ставки процентов. Для того, чтобы отличить ставки непрерывных процентов от ставки дискретных процентов, обозначим первую через d , тогда S = Pe .

Сила роста d представляет собой номинальную ставку процентов при m → ∞. Множитель наращения рассчитывается с помощью ЭВМ или по таблицам функции.

Потоки платежей. Финансовая рента

Контракты, сделки, коммерческие и производственно-хозяйственные операции часто предусматривают не отдельные разовые платежи, а множество распределенных во времени выплат и поступлений. Отдельные элементы такого ряда, а иногда и сам ряд платежей в целом, называется потоком платежей . Члены потока платежей могут быть как положительными (поступления), так и отрицательными (выплаты) величинами. Поток платежей, все члены которого положительные величины, а временные интервалы между двумя последовательными платежами постоянны, называют финансовой рентой . Ренты делятся на годовые и р -срочные, где р характеризует число выплат на протяжении года. Это дискретные ренты. В финансово-экономической практике встречаются и с последовательностями платежей, которые производятся так часто, что практически их можно рассматривать как непрерывные. Такие платежи описываются непрерывными рентами.

Пример 3.13. Пусть в конце каждого года в течение четырех лет в банк вносится по 1 млн. рублей, проценты начисляются в конце года, ставка - 5% годовых. В этом случае первый взнос обратится к концу срока ренты в величину 10 6 ´ 1,05 3 так как соответствующая сумма была на счете в течение 3 лет, второй взнос увеличится до 10 6 ´ 1,05 2 , так как был на счете 2 года. Последний взнос процентов не приносит. Таким образом, в конце срока ренты взносы с начисленными на них процентами представляют ряд чисел: 10 6 ´ 1,05 3 ; 10 6 ´ 1,05 2 ; 10 6 ´ 1,05; 10 6. Наращенная к концу срока ренты величина будет равна сумме членов этого ряда. Обобщим сказанное, выведем соответствующую формулу для наращенной суммы годовой ренты. Обозначим: S - наращенная сумма ренты, R - размер члена ренты,
i - ставка процентов (десятичная дробь), n - срок ренты (число лет). Члены ренты будут приносить проценты в течение n - 1, n - 2,..., 2, 1 и 0 лет, а наращенная величина членов ренты составит

R (1 + i) n - 1 , R (1 + i) n - 2 ,..., R (1 + i), R.

Перепишем этот ряд в обратном порядке. Он представляет собой геометрическую прогрессию со знаменателем (1+i) и первым членом R. Найдем сумму членов прогрессии. Получим: S = R ´ ((1 + i) n - 1)/((1 + i) - 1) = R ´ ((1 + i) n - 1)/ i. Обозначим S n; i = ((1 + i) n - 1)/ i и будем называть его коэффициентом наращения ренты . Если же проценты начисляются m раз в году, то S = R ´ ((1 + i/m) mn - 1)/((1 + i/m) m - 1), где i - номинальная ставка процентов.

Величина a n; i = (1 - (1 + i) - n)/ i называется коэффициентом приведения ренты . Коэффициент приведения ренты при n → ∞ показывает, во сколько раз современная величина ренты больше ее члена:

a n; i = (1 - (1 + i) - n)/ i =1/i.

Пример 3.14. Под вечной рентой понимается последовательность платежей, число членов которой не ограничено - она выплачивается в течение бесконечного числа лет. Вечная рента не является чистой абстракцией - на практике это некоторые виды облигационных займов, оценка способности пенсионных фондов отвечать по своим обязательствам. Исходя из сущности вечной ренты можно полагать, что ее наращенная сумма равна бесконечно большой величине, что легко доказать по формуле:
R
×´ ((1 + i) n - 1)/ i → ∞ при n →∞.

Коэффициент приведения для вечной ренты a n; i → 1/i, откуда A = R/i, т. е. современная величина зависит только от величины члена ренты и принятой ставки процентов.

ХI муниципальный конкурс исследовательских работ

Математика

Проценты и их применение

Воронцовой Анастасии,

учащейся 8б класса

МОУ «Еловская СОШ».

Руководитель Халтурина В.В.

учитель математики


Введение

3. Решение задач по формуле сложных процентов

4. Применение процентов в жизни

4.1 Исследование бюджета семьи

4.2 Исследование посещения кружков

Заключение

Список литературы

Приложения


Введение

Почему я выбрала тему «Проценты»?

Проценты – это одна из сложнейших тем математики, и очень многие учащиеся затрудняются или вообще не умеют решать задачи на проценты. А понимание процентов и умение производить процентные расчёты необходимы для каждого человека. Прикладное значение этой темы очень велико и затрагивает финансовую, экономическую, демографическую и другие сферы нашей жизни. Изучение процента продиктовано самой жизнью. Умение выполнять процентные вычисления и расчеты необходимо каждому человеку, так как с процентами мы сталкиваемся в повседневной жизни. Проанализировав программу средней школы по математике, пришла к выводу, что по существующим программам решение задач на проценты предусмотрено в основном в 5-6 классах, а в последующих классах данной теме отдана незначительная часть учебного времени. Немецкий физик 18-го столетия Лихтенберг сказал: « То, что вы были принуждены открыть сами, оставляет в вашем уме дорожку, которой вы сможете снова воспользоваться, когда в том возникнет необходимость». Поэтому я решила и сделала подборку задач из ГИА – 9 классов, из ЕГЭ – 11 классов на банковские проценты, где применяется формула сложных процентов.

Цель исследовательской работы

· Расширение знаний о применении процентных вычислений в задачах и из разных сфер жизни человека;

· Познакомиться с историей возникновения процентов;

· Решать задачи на проценты разными способами;

· Сделать подборку задач из ГИА – 9 кл., ЕГЭ -11кл., решаемые по формуле сложных процентов;

· Исследовать бюджет семьи и посещаемость кружков учащихся моего класса;

· Научиться составлять различные диаграммы и таблицы;

· Поработать в текстовом редакторе;

· Поработать с ресурсами Internet;

· Получить опыт публичного выступления.


1. Из истории происхождения процентов

Слово «процент» происходит от латинского pro centum, что буквально означает «за сотню» или «со ста». Процентами очень удобно пользоваться на практике, так как они выражают целые части чисел в одних и тех же сотых долях. Знак «%» происходит, как полагают, от итальянского слова cento(сто), которое в процентных расчетах часто писалось сокращенно cto . Существует и другая версия возникновения этого знака. Предполагается, что этот знак произошел в результате нелепой опечатки, совершенной наборщиком. В 1685 году в Париже была опубликована книга – руководство по коммерческой арифметике, где по ошибке наборщик вместо cto ввел %.

Проценты применялись только в торговых и денежных сделках. Затем область их применения расширилась, проценты встречаются в хозяйственных и финансовых расчетах, статистике, науке и технике. Ныне процент – это частный вид десятичных дробей, сотая доля целого (принимаемого за единицу).


2. Решение задач на проценты разными способами

При решении задач на проценты в 5 - 6 классах применяют следующие правила:

1. Нахождение процентов от числа:

Чтобы найти проценты от числа нужно, проценты превратить в десятичную дробь и умножить на это число.

2. Нахождение числа по его процентам:

Чтобы найти число по его процентам нужно, проценты превратить в десятичную дробь и число разделить на эту дробь.

3. Нахождение процентного отношения чисел:

Чтобы найти процентное отношение чисел, надо отношение этих чисел умножить на 100.

Задачи с процентами можно решить разными способами: уравнением, составлением таблицы, применяя пропорцию, по действиям, используя правила. Сделала подборку и решила задачи из ЕГЭ – 11, ГИА -9 классов.

Некоторые из них:

Задача 1. (ЕГЭ 2005)

За первый год предприятие увеличило выпуск продукции на 8%, в следующем году выпуск увеличился на 25%. На сколько процентов вырос выпуск продукции по сравнению с первоначальной?

Эту задачу можно решить двумя способами:

1) используя пропорцию

2) по действиям

1 способ: Узнаю на сколько увеличился выпуск продукции за первый год.

Пусть: х – начальный выпуск

у – после увеличения на 8%

х – 100% у = х *8 = 1,08х

у – 108% 100

Теперь, узнаю на сколько увеличился выпуск продукции за второй год.

Пусть: 1.08х – теперь уже начальный выпуск

z – после увеличения на 25%, тогда

1,08х – 100% z= 1,08х *125 = 1,35х

В итоге у нас получилось, что выпуск продукции равен 1,35;

Значит выпуск увеличился на 0,35 или на 35%

1) 1,00+0,08=1,08 (узнали выпуск продукции после первого увеличения)

2)1,00+0,25=1,25 (узнали выпуск продукции после второго увеличения)

3)1,08*1,25=1,35 (это выпуск продукции после двух увеличений)

4)1,35-1,00=0,35 (увеличения выпуска продукции после двух прибавок)

ОТВЕТ: выпуск продукции по сравнению с первоначальной вырос на 35%.

Задача 2(ЕГЭ 2006)

Вследствие инфляции цены выросли на 150%. Дума потребовала от правительства возвращение цен к прежнему уровню. Для этого цены должны быть уменьшены (на сколько процентов)?

Решим эту задачу с помощью пропорций.

Пусть: х – первоначальная цена

у – цена после повышения цен на 150%

х – 100% у = 250х ; у = 2,5х (новая цена)

у – 250% 100

2,5х – 100% 100*х = 40%

х - ?% 2,5х

40% - составила первоначальная цена от инфляции, поэтому цены должны быть уменьшены на 60%

1) 100% - 40% = 60%

ОТВЕТ: цены должны быть уменьшены на 60%.

Тетрадь стоит 40 рублей. Какое наибольшее количество таких тетрадей можно купить на 650 рублей, после понижения на 15%?

Решим эту задачу пропорцией и по действиям.

Пусть: х – на сколько рублей понизилась цена тетрадей.

40 – 100% х = 40*0,15 = 6 (рублей)

х – 15% 100

1) 40 – 6 = 34 (руб.) стала стоить тетрадь

2) 650 * 34 = 19 (тетрадей) можно купить на 650 рублей

ОТВЕТ: 19 тетрадей можно купить на 650 рублей

Сколько граммов воды надо добавить к 50г раствора, содержащего 8% соли, чтобы получить 5% раствор?

Решим эту задачу уравнением.

Пусть: х - количество воды, которое надо добавить

(50+х ) – новое количество раствора

50* 0,08 – количество соли в исходном растворе

0,05(50+х ) количество соли в новом растворе

Так как количество соли от добавления не изменилось, то оно одинаково в обоих растворах – и в исходном, и в новом.

Получаем уравнение:

50*0,08 = 0,05(50+х )

50*8 = 5*(50+х )

400= 250+5х

5х = -150

х = 30 (г.)

ОТВЕТ: 30 граммов воды надо добавить, чтобы получить 5% раствор.

Вывод: решила задачу с помощью уравнения.

Свежие грибы по массе содержат 90% воды, а сухие 12%. Сколько получится сухих грибов из 22 кг свежих?

Решение: решим задачу с помощью таблицы и уравнения.

%воды Масса (кг) % содержания сухого вещества Масса сухого вещества
свежие 90% 22 10% 22*0,1=2,2
сухие 12% х 88% 0,88х

Из таблицы видно, что:

х = 2,2 = 2,5кг

Ответ: 2,5 кг сухих грибов.


3. Решение задач на сложные проценты

Сложным процентом называется сумма дохода, которая образуется в результате инвестирования денег при условии, что сумма начисленного простого процента не выплачивается в конце каждого периода, а присоединяется к сумме основного вклада и в следующем платежном периоде сама приносит доход .

Сложные проценты - это проценты, полученные на начисленные проценты.

Формула сложного процента - это формула, по которой рассчитывается итоговая сумма с учётом начисления процентов.

х (1+ 0,01а) n - периодическое увеличение некоторой величины на одно и то же число процентов.

х (1+ 0,01а) n,

где х - начальный вклад, сумма.

а – процент(ы) годовых

n- время размещения вклада в банке

Но, мы можем и уменьшать цену, поэтому эту формулу можно записать и по- другому: х (1- 0,01а) n - периодическое уменьшение некоторой величины на одно и то же число процентов.

Представим, что вы положили 10 000 руб в банк под 10 % годовых.

Через год на вашем банковском счету будет лежать

сумма SUM = 10000 + 10000*10% = 11 000 руб.

Ваша прибыль - 1000 рублей.

Вы решили оставить 11 000 руб. на второй год в банке под те же 10%.

Через 2 года в банке накопится 11000 + 11000*10% = 12 100 руб.

Прибыль за первый год (1000 рублей) прибавилась к основной сумме (10 000р) и на второй год уже сама генерировала новую прибыль. Тогда на 3-й год прибыль за 2-й год прибавится к основной сумме и будет сама генерировать новую прибыль. И так далее.

Этот эффект и получил название сложный процент.

Когда вся прибыль прибавляется к основной сумме и в дальнейшем уже сама производит новую прибыль.

Вкладчик открыл счет в банке, внеся 2000 рублей на вклад, годовой доход по которому составляет 12%, и решил в течение шести лет не брать процентные начисления. Какая сумма будет лежать на счете через шесть лет?

Решим эту задачу по формуле сложных процентов

х (1 + 0,01а ) n ,

где х – первоначальный вклад.

а – процент годовых.

n - время размещения вклада в банке.

Применим эту формулу к нашей задаче

Публикации по теме