Параметры цилиндрических прямозубых колес. Цилиндрические косозубые и шевронные зубчатые передачи. Устройство и основные геометрические и силовые соотношения

Рассмотрим элементы зубчатых колес (рис. 2), находящихся в зацеплении, в плоскости, перпендикулярной к оси вращения. По высоте снаружи зубья ограничены окружностью выступов диаметром , изнутри – окружностью впадин диаметром. Боковые поверхности полного профиля зуба очерчены эвольвентами противоположных ветвей. Эвольвента представляет собой траекторию произвольной точки прямой, перекатывающейся без скольжения по окружности, называемой основной. Положительная ветвь эвольвенты получается при перекатывании производящей прямой против хода часовой стрелки, отрицательная – по ходу часовой стрелки. С увеличением радиуса основной окружности до бесконечности (зубчатая рейка) эвольвента превращается в прямую. Часть бокового профиля зуба очерчивается по переходной кривой, служащей плавным переходом от эвольвенты к окружности впадин. Наличие переходной кривой делает зуб более прочным у основания. При зацеплении одного колеса с другим появляется начальная окружность радиусом. Это окружность одного зубчатого колеса, перекатывающаяся без скольжения по окружности (поверхности) второго из зацепляющихся колес. Расстояние между одноименными профилями соседних зубьев по дуге окружности называется окружным шагом и обозначается. Значение этого параметра по начальным окружностям должно быть одинаковым у находящихся в зацеплении колес. Пользуясь шагом зацепления, можно выразить длину любой окружности колеса, умножив шаг на число зубьевz :

z = πd (1)

где t – индекс соответствующей окружности, например, ,, или,.


Величина выражается несоизмеримым числом, так как в правую часть условия (3) входит число π. Это затрудняет выбор размеров колес при их проектировании и изготовлении. Поэтому основным параметром принят не шаг, а отношение его к числу π. Эта величина называется модулем зацепления

m t = p t (2)

Шаг и модуль имеют индекс той окружности, по которой они измерены. Величины модулей для снижения номенклатуры и унификации режущего и контролирующего инструмента стандартизированы. Чаще всего согласно стандартам ограничиваются следующими значениями модуля (в миллиметрах): 0,05; 0,06; 0,08; 0,1; 0,12; 0,15; 0,20; 0,25; 0,3; 0,5; 0,6; 0,8; 1,0; 1,25; 1,5; 2,0; 2,5; 3,0; 4,0; 5,0. Окружность, по которой модуль имеет расчетное стандартное значение, называется делительной. Диаметр ее обозначается d , она является базовой для определения элементов зубьев и их размеров. Шаг и модуль по делительной окружности обозначают соответственно р и m .

Диаметр делительной окружности

d = mz. (3)

Для наиболее распространенных неисправленных по высоте (нулевых) колес начальная и делительные окружности совпадают, и передаточное отношение для пары таких колес будет равно

Помимо шага по дуге окружности различают и угловой шаг (центральный угол, соответствующий шагу по дуге). За время контакта одной пары зубьев колесо повернется на угол перекрытия. Для обеспечения непрерывности передачи движения от ведущего к ведомому колесу необходимо, чтобы до выхода из контакта данной пары зубьев в зацепление вступила очередная пара зубьев. Это условие будет соблюдаться, если угловой шаг колеса меньше угла перекрытия. Отношение угла перекрытия к угловому шагу, называют коэффициентом перекрытия зубчатой передачи ε . Допустимым считается значение ε ≥ 1,2.

Часть зуба, заключенную между окружностью выступов и делительной окружностью, называют головкой зуба, а часть зуба, заключенную между делительной окружностью и окружностью впадин, – ножкой зуба. Основные геометрические параметры зубчатого колеса – диаметры выступов d a и впадин d f , общая высота зуба h , высота головки h a и ножки h f , толщина зуба s и ширина впадин между зубьями – выражаются через основной параметр зубчатой передачи – модульm , по ГОСТ 9587-68.

Зубчатые передачи в приборостроении обычно используют не как силовые для передачи значительных моментов сил, а как кинематические для получения требуемых скоростей вращения. Зубчатую передачу в этом случае не рассчитывают на прочность, модуль выбирают из стандартного ряда по конструктивным соображениям. Применение малых модулей позволяет уменьшить габариты колес и увеличить плавность передачи при сохранении габаритов за счет увеличения числа зубьев. При заданном диаметре стоимость колес с уменьшением модуля возрастает, но повышается точность работы зубчатой пары, КПД таких передач 0,94 ... 0,98.

Высота головки зуба принимается равной модулю

h a = m (5)

Высота ножки зуба принимается равной 1,25 модуля

h f = 1,25 m (6)

Высота зуба

h = h a + h f = m +1,25 m =2,25 m (7)

Разница в высоте ножки зуба одного колеса и высоте головки зуба другого необходима для образования радиального зазора

с= h f h a =0,25 m (8)

Диаметр окружности выступов

d a = d+2 h a = zm+2m= m(z+2) (9)

Диаметр окружности впадин

d f = d 2 h f = zm 2,5 m = m (z 2,5) (10)

Теоретически толщина зуба s и ширина впадины по делительной окружности равны между собой

s == p/2= πm/2 =1,57 m (11)

Однако, чтобы создать боковой зазор, необходимый для нормальной работы зубчатой пары, зуб делается несколько тоньше, вследствие чего он входит во впадину свободно.

Траектория точек контакта пары зубьев во время зацепления у эвольвентных колес называется линией зацепления. Она является общей нормалью к боковым профилям зубьев. Угол между линией зацепления и перпендикуляром к межосевому расстоянию называют углом зацепления α, обычно α = 20°. При изменении межосевого расстояния линия зацепления изменяет свое положение. Изменяется угол зацепления, но передаточное отношение не нарушается.

Чем меньше зубьев имеют колеса, тем меньше их габариты при одном и том же модуле. Уменьшение зубьев допустимо лишь до определенного предела. Если число зубьевz будет меньше минимально допустимого, то при изготовлении путем нарезания режущий инструмент срезает часть зуба, возникает подрезание зубьев у ножки (рис. 3). Профиль зуба из-за подрезания искажается, нарушается плавность зацепления, уменьшается прочность зуба.

Минимально допустимое число зубьев при угле зацепления α = 20° равно 17, а при α = 15°, минимальное число

Зубьев равно 30. При изготовлении зубчатых колес иногда применяют зубья укороченной высоты с коэффициентом высоты головки ha* = 0,8. Это позволяет получить без подреза меньшее число зубьев на шестернях. Так при α = 20° и ha* = 0,8 минимально допустимое число зубьев равно 14.

Шевронные цилиндрические передачи. Шевронное колесо представляет собой сдвоенное косозубое колесо, выполненное как одно целое см. рис. 1, в. Вследствие разного направления зубьев на полушевронах осевые силы Fa2 взаимно уравновешиваются на колесе и на подшипники не передаются рис. 16. Это обстоятельство позволяет принимать у шевронных колес угол наклона зуба в 25 40, что повышает прочность зубьев и плавность передачи.

Шевронные зубчатые колеса изготовляют с дорожкой в середине колеса для выхода режущего инструмента червячной фрезы на рис. 16 или без дорожки нарезаются долбяком или гребенкой со специальной заточкой, см. рис. 1, в. Шевронные колеса без дорожки нарезают на специальных малопроизводительных и дорогих станках, поэтому их применяют реже, чем колеса с дорожкой.

Ширина дорожки а 10 15 m. Шевронный зуб требует строго определенного осевого положения шестерни относительно колеса, поэтому пары монтируют в подшипниках, допускающих осевую игру вала. Недостатком шевронных колес является большая стоимость их изготовления. Применяются в мощных быстроходных закрытых передачах. Геометрический и прочностной расчет шевронной передачи аналогичны расчетам косозубой передачи. Для шевронной передачи коэффициент ширины обода колеса ша 0,40,8. При строгой параллельности зубьев и осей О2О2 и O1O1 прямые зубья входят в зацепление по всей длине В рис. 17, а Если колесо шириной В, имеющее прямые зубья, разрезать нa ряд тонких колес 1, 2, 3, 4, 5 рис. 17, б и каждое из них повернуть на оси относительно предыдущего на некоторый угол, чтобы зуб сместился на дугу s, то получится колесо со ступенчатым зубом. При вращении колес в зацепление последовательно удут входить участки 1 1, 2 2, 3 3 и т. д. В такой же последовательности они будут и выходить из зацепления.

Взяв бесконечно большое число бесконечно тонких колес, получим косой винтовой зуб, наклоненный к оси вращения под углом в рис. 17, в. Косые зубья работают более плавно по сравнению с прямыми зубьями, так как одновременно в зацеплении находится большее число зубьев при той же ширине колес В. Существенным недостатком косозубых колес является наличие осевого усилия Рос, стремящегося сдвинуть колеса вдоль оси вала. Из рис. 17, в видно, что чем больше будет угол в, тем больше будет и осевое усилие Рос при одном и том же окружном усилии Р0кр. На рис. 17, в показано направление давления зуба шестерни на зуб колеса. Для исключения осевой нагрузки на опоры на валу устанавливают два косозубых колеса с наклоном зубьев в противоположные стороны.

При этом следует иметь в виду, что при неточной продольной установке колес на валу может оказаться, что будет соприкасаться только одна пара зубьев из двух сопряженных пар колес, например левая, как показано на рис. 18 как правило, один из валов делают самоустанавливающимся относительно другого.

Осевая сила Рос стремится сдвинуть влево вал вместе с закрепленным на нем колесом. Для распределения окружного усилия Рокр поровну на оба колеса необходимо предусмотреть продольный так называемый монтажный зазор е между опооой и бортиком вала. После сдвига шестерни и вала влево под действием силы Рос давление на обе половины колеса и шестерни распределяется поровну. 1.8

Конец работы -

Эта тема принадлежит разделу:

Зубчатые косозубые передачи

Параметрам шестерни приписывают индекс 1, параметрам колеса индекс 2. Зубчатые передачи самый распространенный вид механических передач, так как… Достоинства. 1. Высокая надежность работы в широком диапазоне нагрузок и… Классификация.

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основы теории зубчатого зацепления
Основы теории зубчатого зацепления. N Профили зубьев пары колес должны быть сопряженными, т. е. заданному профилю зуба одного колеса должен соответствовать вполне определенный профиль зуба другого

Изготовление зубчатых колес
Изготовление зубчатых колес. Заготовки зубчатых колес получают литьем, ковкой в штампах или свободной ковкой в зависимости от материала, формы и размеров. Зубья колес изготовляют накатывание

Материалы зубчатых колес
Материалы зубчатых колес. Выбор материала зубчатых колес зависит от назначения передачи и условий ее работы. В качестве материалов колес применяют стали, чугуны и пластмассы. Стали. Основным

Виды разрушения зубьев и критерии работоспособности зубчатых передач
Виды разрушения зубьев и критерии работоспособности зубчатых передач. В процессе работы на зубья действуют силы передаваемой нагрузки и силы трения. Для каждого зуба напряжения изменяются во

Общие сведения
Общие сведения. Цилиндрические колеса, у которых зубья расположены по винтовым линиям на делительном цилиндре, называют к о с о з у б ы м и см. рис. 1, б. В отличие от прямозубой в косозубой

Эквивалентное колесо
Эквивалентное колесо. А-А Как указывалось выше, профиль косого зуба в нормальном сечении А А рис. 14 соответствует исходному контуру инструментальной рейки и, следовательно, совпадает с профилем пр

Силы в зацеплении
Силы в зацеплении. В косозубой передаче нормальная сила Fn составляет угол в с торцом колеса рис. 15. Разложив Fn на составляющие, получим радиальную силу где Ft 2T2 d2 окружная сила осевую силу Пр

Расчет на контактную прочность
Расчет на контактную прочность. Вследствие наклонного расположения зубьев в косозубом зацеплении одновременно находится несколько пар зубьев, что уменьшает нагрузку на один зуб, повышая его прочнос

Расчет на изгиб
Расчет на изгиб. Аналогично расчету прямозубой передачи условия прочности на изгиб зубьев шестерни и колеса косозубой передачи где YF коэффициент формы зуба, выбирают по эквивалентному числу зубьев

Зубчатые передачи с зацеплением М. Л. Новикова
Зубчатые передачи с зацеплением М. Л. Новикова. Эвольвентное зацепление, распространенное в современном машиностроении, является л и н е й ч а т ы м, так как контакт зубьев происходит по линии прак

Определенное отношение скоростей, как следствие наличия зубьев, дает зубчатым передачам преимущество над другими приводами (такими, как фрикционные и клиноременными) в точных механизмах, таких как часы, которые основаны на точном отношении скоростей.

В случаях, когда источник движения и его приемник в непосредственной близости друг от друга, зубчатые колеса также имеют преимущество над другими приводами благодаря малому числу необходимых деталей; обратная сторона заключается в том, что зубчатые колеса более дороги в изготовлении и необходимость в смазке повышает стоимость эксплуатации.

Редуктор это не усилитель или сервомеханизм. Закон сохранения энергии определяет, что количество энергии, выдаваемое выходным зубчатым колесом или валом, никогда не превышает энергию, приложенную к входному колесу, вне зависимости от передаточного отношения. Работа равна произведению силы и пройденного пути, поэтому небольшому зубчатому колесу необходимо покрыть большее расстояние в процессе, и воздействовать с большей крутящей силой или вращающим моментом, чем это было бы в случае, если зубчатые колеса были бы одного размера. Также имеет место некоторая потеря выходной мощности вследствие трения. Используя качественные хорошо смазанные зубчатые колеса промышленного производства, сделанные в соответствии с запросами рынка, можно добиться снижения потерь энергии до двух процентов и ниже.

Прямозубые цилиндрические колеса

Прямозубые цилиндрические колеса наиболее простой, и по всей видимости, наиболее распространенный тип зубчатого колеса. Их основная форма – цилиндр или диск (диск это всего лишь короткий цилиндр). Зубья выступают радиально, и у этих «прямо нарезанных колес» образующие поверхности зуба расположены параллельно оси вращения. Данные зубчатые колеса зацепляются подобающим образом, только если они установлены на параллельных валах.

Косозубые цилиндрические колеса

Косозубые цилиндрические зубчатые колеса – усовершенствование по сравнению с прямозубыми. Образующие зубьев не параллельны оси вращения, а расположены под углом. Так как колесо круглое, то отклонение на угол вызывает то, форма зуба представляет собой участок винтовой линии. Расположенный под углом зуб входит в зацепление постепенно, в отличие от прямого. Это приводит к тому, что косозубые колеса работают более плавно и тихо, чем прямозубые. Косозубые колеса допускают возможность использования непараллельных валов. Пара косозубых колес может зацепляться при двух способах ориентации валов: либо по сумме, либо по разности углов зубьев колес. Эти конфигурации еще называются параллельной и скрещивающейся соответственно. Параллельная более традиционна. При ней винтовые линии пары сцепленных зубьев соприкасаются на общей касательной, и контакт между зубьями проходит (в общем случае) по кривой на некотором участке их длины. В скрещивающейся конфигурации винтовые линии не соприкасаются по касательным, и между поверхностями зубьев контакт происходит в точке. Из-за небольшой площади контакта, скрещивающиеся косозубые колеса могут быть использованы только при слабых нагрузках.

Достаточно часто косозубые колеса входят в пары, где угол винтовой линии одного колеса противоположен по знаку углу другого; их можно назвать колесами с правой и левой винтовыми линиями равных углов. Если подобная пара сцепляется параллельно, то два равны, но противоположных угла дадут ноль: угол между валами равен нулю, значит, валы параллельны. Если пара сцепляется «накрест», то угол между валами будет равен удвоенному значению угла их винтовых линий.

Следует отметить, что «параллельные» косозубые колеса не нуждаются в параллельных валах – так получается, только если углы их винтовых линий равны по модулю, но противоположны по знаку. Здесь имеется в виду параллельность (квази-параллельность) зубьев, а не положение валов.

Как отмечалось в начале параграфа, косозубые колеса работают более плавно, чем прямозубые. Когда колеса параллельные, каждая пара зубьев сначала входит в контакт в одной точке на одной стороне зубчатого колеса; движущаяся кривая контакта на поверхности зуба постепенно увеличивается. Вплоть до всей ширины зуба в некоторой момент времени. Наконец, она убывает до того момента, когда зубья теряют контакт в единственной точке на противоположной стороне колеса. Таким образом, сила распределена равномерно. В случае с прямозубым колесом ситуация иная. Когда пара зубьев сходится, немедленно возникает линия контакта по всей длине зуба. Это вызывает ударную нагрузку и шум. Прямозубые колеса на высоких скоростях производят характерный «жалобный вой» и не способны к передачи таких же больших моментов, как косозубые, из-за того, что их зубья воспринимают ударную нагрузку. Тогда как прямозубые колеса используются при небольших скоростях и когда можно подавить шум (а косозубые требуются, когда заложены высокие скорости, мощности или требуется снижение шума). Скорость считается высокой, когда скорость по делительной окружности (окружная скорость) превышает 5000 футов в минуту 1 . Недостатки косозубых колес - в возникающем давлении вдоль оси колеса, которое необходимо уравновесить установкой радиально-упорного подшипника, а также в повышенном трении скольжения между входящими в зацепление зубьями, из-за чего часто прибегают к специальным присадкам в смазку.

У косозубых колес зубья имеют наклон под углом b к образующей делительного цилиндра. Оси колес при этом остаются параллельными.

Это дает следующие преимущества по сравнению с прямозубыми колесами:

1. Повышение нагрузочной способности за счет увеличения суммарной длины контактной линии зубьев (увеличение числа пар зубьев, одновременно находящихся в зацеплении);

2. Большая плавность хода и меньший шум во время работы (зубья колеса входят в зацепление не сразу по всей длине, а постепенно ).

Угол наклона линии зубьев косозубых цилиндрических колес находится в пределах .


Расчет геометрических параметров косозубых колес проводят по тем же формулам, что и для прямозубых цилиндрических колес, подставляя вместо нормального m торцовый модульm t . Торцовый и нормальный модули связаны следующим соотношением:


- нормальный шаг зубьев;


- торцовый шаг зубьев


,

.

Тогда диаметры делительной окружности , окружности вершини окружности впадинкосозубого колеса, нарезанного без смещения, можно представить в следующем виде:


,

,

.

Силы в зацеплении цилиндрической косозубой передачи


- окружная сила;


- вспомогательная окружная сила;


- осевая сила;


- радиальная сила;


- сила нормального

давления.

Наличие в передаче осевой силы приводит к дополнительному нагружению вала изгибающим моментом, а подшипников - осевой силой, что ведет к необходимости применения в опорах радиально-упорных подшипников, воспринимающих радиальную и осевую нагрузку.

Проектные и проверочные расчеты косозубых передач по контактным напряжениям и напряжениям изгиба производят по тем же зависимостям, что и для прямозубых передач. При этом учитывают увеличение прочности зубьев вследствие угла наклона зубьев .

Расчетная схема нагружения валов цилиндрической косозубой передачи


Наличие в зацеплении осевых сил, которые дополнительно нагружают опоры валов, являются недостатком косозубых колес. Этот недостаток устраняется в шевронной передаче.

2.11. Шевронные передачи

Шевронная передача подобна сдвоенной косозубой передаче с противоположным направлением зубьев. Осевые силы здесь уравновешиваются на самом зубчатом колесе.


- угол наклона линии зубьев.

Преимущество: плавность хода еще выше, чем у косозубой передачи.

Недостаток: сложность изготовления (необходимость применения непроизводительных методов нарезания зубьев ).

Исключением являются передачи с раздвоенным силовым потоком (разнесенный шеврон)


2.12 Зубчатые конические передачи

Конические передачи предназначены для передачи вращательного движения между валами, оси которых пересекаются под некоторым углом. Наибольшее распространение получили ортогональные передачи с углом пересечения осей 90 град.

У конического зубчатого колеса (ЗК) образующей поверхностью является конус.

По направлению зубьев конические ЗК бывают:

1 – прямозубые;

2 – косозубые;

3 – с круговыми зубьями.

Передаточное отношение конической ЗП:


где d 1 , d 2 - половины углов при делительных конусах;


,

- диаметры делительных окружностей в среднем сечении.

При расчетах на прочность конические колеса заменяют на эквивалентные цилиндрические прямозубые колеса с делительным диаметром и числом зубьев:


,

.

3.49. Косозубые зубчатые передачи, как и прямозубые, предназначены для передачи вращательного момента между параллельными валамя (рис. 3.36). У косозубых колес оси зубьев располагаются не по образующей делитель­ного цилиндра, а по винтовой линии, составляющей с образующей угол β (рис. 3.44). Угол наклона зубьев р принимают равным 8÷18°, он одинаков для обоих колес, но на одном из сопряженных колес зубья наклонены вправо, а на другом влево.

Рис. 3.36. Цилиндрическая косозубая передача

Передаточное число для одной пары колес может быть и ≤ 12. В прямозубых передачах линия контакта параллельна оси, а в косозубых расположена по диа­гонали на поверхности зуба (контакт в прямозубых передачах осуществляется вдоль всей длины зуба, а в косозубых - сначала в точке увеличивается до пря­мой, «диагонально» захватывающей зуб, и постепен­но уменьшается до точки).

Достоинства косозубых передач по сравнению с прямозубыми: уменьшение шума при работе; меньшие габаритные размеры; высокая плавность зацепления; большая нагрузочная способность; значительно меньшие дополнительные дина­мические нагрузки.

За счет наклона зуба в зацеплении косо-зубой передачи появляется осевая сила.

Направление осевой силы зависит от на­правления вращения колеса (рис. 3.37), на­правления винтовой линии зуба, а также от того, каким является колесо - ведущим или ведомым. Осевая сила дополнительно нагру­жает валы и опоры, что является недостатком косозубых передач.



Рис. 3.37. Усилия в косозубой цилиндрической передаче

3.50. Шевронные зубчатые колеса пред­ставляют собой разновидность косозубых колес (рис. 3.38).

а) б)

Рис. 3.38. Шевронная зубчатая передача

Цилиндрическое зубчатое колесо, венец которого по ширине состоит из участков с правыми и левыми зубьями (рис. 3.38, а), называют шеврон­ным колесом. Часть венца зубчатого колеса, в пределах которого линии зубьев имеют одно направление, называют полушевроном. Различают шев­ронные колеса с жестким углом (рис. 3.38, б), предназначенным для выхо­да режущего инструмента при нарезании зубьев. Шевронные передачи об­ладают всеми преимуществами косозубых, а осевые силы (рис. 3.39) проти­воположно направлены и на подшипник не передаются.

Рис. 3.39. Усилия в зацеплении шевронных зубчатых колес

В этих передачах допускают большой угол наклона зубьев (β = 25 ÷ 40°). Ввиду сложности изготовления шевронные передачи применяют реже, чем косозубые, т. е. в тех случаях, когда требует­ся передавать большую мощность и высо-кую скорость, а осевые нагрузки нежелательны.

Будет ли возникать осевая сила в переда­че, состоящей из зубчатых колес (рис. 3.40)? Чем отличается эта передача от косозубой?

3.51. Косозубые и шевронные колеса в отличие от прямозубых имеют два шага и два модуля: в нормальном сечении (см. рис. 3.44) по делительной окружности - нормальный шаг р п, в торцовой плоскости - торцовый шаг р t . Из условия, что модуль зацепления равен шагу, деленному на число π, имеем т п = р 1 /π; т t = р t /п.

Для косозубых и шевронных колес значения нормального модуля т n стандартизованы, так как профиль косого зуба в нормальном сечении со­ответствует исходному контуру инструментальной рейки и, следовательно, т = т п (косозубые и шевронные колеса нарезают, тем же способом и инст­рументом, что и прямозубые). Нормальный модуль т п является исходным при геометрических расчетах.

Определим зависимость между нормальным и торцовым шагом и модулех через угол наклона зубьев.

Если левую и правую части разделим на л, получим

m n = m t cosβ; m t = m n /cosβ.

3.52. Геометрические параметры цилиндрической косозубой и шевронной передач с эвольвентным профилем зуба рассчитают по формулам, приве­денным в табл. 3.13. По торцовому модулю т t рассчитывают делительные (начальные) диаметры, а до т п - все остальные размеры зубчатых колес.

Таблица 3.13. Геометрические параметры цилиндрической косозубой передачи

Параметр, обозначение Расчетные формулы
Нормальный модуль т„
Торцовый (окружной модуль) т t
Диаметр вершин зубьев d a
Делительный диаметр d
Диаметр впадин зубьев d f
Шаг нормальный р n
Шаг торцовый (окружной) р t
Окружная толщина зубьев S t
Ширина впадин зубьев e t
Параметр, обозначение Расчетные формулы
Высота зуба h h = 2,25m n
Высота головки зуба h a h a = m n
Высота ножки зуба h f h f .=l,25m n
Радиальный зазор с с = 0,25m n
Межосевое расстояние a ω
Длина зуба b
Ширина венца b ω

Окружная сила F t = P/v. На косой зуб действует осевая сила F a = F t tgα (см. рис. 3.37), радиальная (распорная) сила F r = F t tga/cosβ.

Определите т п и m t , если известны делительный диаметр и межосевое расстояние.

3.53. В косозубдй передаче сила F, действующая на зуб косозубого колеса
(см. рис. 3.44), направлена по нормали к профилю зуба, т. е. по линии зацепле­
ния эквивалентного прямозубого колеса, и составляет угол а с касательной к
эллипсу.

Эту силу разложим на две составляющие: окружную силу на эквива­лентном колесе F t и радиальную (распорную) силу на этом колесе F r .

Если, в свою очередь, силу F } разложить по двум направлениям, то по­лучим такие силы: F, - окружную силу, F a - осевую.

3.54. Для зубчатого колеса с шевронным зубом окружную силу F 1 и рас­
порную F r определяют по тем же формулам, что и для косозубой передачи,
т. е. F t = P/v, F r = F t tgα/cosβ. В шевронной передаче осевая сила F a = 0 (см.
рис. 3.39).

Почему в шевронной передаче (см. рис. 3.38) осевая сила равна нулю?

3.55. Винтовая передача (разновидность ко­созубой) состоит из двух косозубых цилиндри­ческих колес (рис. 3.42). Однако в отличие от косозубых цилиндрических передач с парал­лельными валами касания между зубьями здесь происходит в точке и при значительных скоро­стях скольжения. Поэтому при значительных нагрузках винтовые зубчатые передачи работать удовлетворительно не могут.

По рис. 3.42 определите, как расположены оси валов у винтовой передачи.

Рис. 3.41. Винтовая зубчатая передача

3.56. Ответить на вопросы контрольной карточки 3.8.

Контрольная карточка 3.8
Вопрос Ответы Код
Покажите на рис. 3.42 нормальный шаг зубьев р„ Х 1 Х 2 Х 3 Х 4 На рисунке не показан
В каких пределах принимают угол наклона зубьев (р) для косозубой зубчатой передачи? 8 ÷ 18° 25 ÷ 45° 20° 90°
Какой модуль принимают стандартным при расчете косозубой зубчатой передачи? Т n т t Оба
Укажите формулу для расчета передаточного числа косозубой передачи, если известны диаметры, пока­занные на рис. 3.43 da/da da 2 /da x d/d 2 d 2 /d\
По какому модулю рассчитывают делительный раз­мер в косозубой передаче? Т n m y По обоим

Рис. 3.42

Публикации по теме